crypto_hkdf.c 6.58 KB
Newer Older
1
2
3
/* Copyright (c) 2001, Matej Pfajfar.
 * Copyright (c) 2001-2004, Roger Dingledine.
 * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
Nick Mathewson's avatar
Nick Mathewson committed
4
 * Copyright (c) 2007-2018, The Tor Project, Inc. */
5
6
7
8
9
10
11
/* See LICENSE for licensing information */

/**
 * \file crypto_hkdf.c
 * \brief Block of functions related with HKDF utilities and operations.
 **/

12
13
14
#include "lib/crypt_ops/crypto_hkdf.h"
#include "lib/crypt_ops/crypto_util.h"
#include "lib/crypt_ops/crypto_digest.h"
15

16
#include "lib/crypt_ops/crypto_openssl_mgt.h"
17
18
19
#include "lib/intmath/cmp.h"
#include "lib/log/util_bug.h"

20
#ifdef ENABLE_OPENSSL
21
22
#include <openssl/opensslv.h>

23
#if defined(HAVE_ERR_LOAD_KDF_STRINGS)
24
#include <openssl/kdf.h>
25
#define HAVE_OPENSSL_HKDF 1
26
#endif
27
#endif
28

29
30
#include <string.h>

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/** Given <b>key_in_len</b> bytes of negotiated randomness in <b>key_in</b>
 * ("K"), expand it into <b>key_out_len</b> bytes of negotiated key material in
 * <b>key_out</b> by taking the first <b>key_out_len</b> bytes of
 *    H(K | [00]) | H(K | [01]) | ....
 *
 * This is the key expansion algorithm used in the "TAP" circuit extension
 * mechanism; it shouldn't be used for new protocols.
 *
 * Return 0 on success, -1 on failure.
 */
int
crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len,
                               uint8_t *key_out, size_t key_out_len)
{
  int i, r = -1;
  uint8_t *cp, *tmp = tor_malloc(key_in_len+1);
  uint8_t digest[DIGEST_LEN];

  /* If we try to get more than this amount of key data, we'll repeat blocks.*/
  tor_assert(key_out_len <= DIGEST_LEN*256);

  memcpy(tmp, key_in, key_in_len);
  for (cp = key_out, i=0; cp < key_out+key_out_len;
       ++i, cp += DIGEST_LEN) {
    tmp[key_in_len] = i;
    if (crypto_digest((char*)digest, (const char *)tmp, key_in_len+1) < 0)
      goto exit;
    memcpy(cp, digest, MIN(DIGEST_LEN, key_out_len-(cp-key_out)));
  }

  r = 0;
 exit:
  memwipe(tmp, 0, key_in_len+1);
  tor_free(tmp);
  memwipe(digest, 0, sizeof(digest));
  return r;
}

69
70
71
72
73
74
#ifdef HAVE_OPENSSL_HKDF
/**
 * Perform RFC5869 HKDF computation using OpenSSL (only to be called from
 * crypto_expand_key_material_rfc5869_sha256_openssl). Note that OpenSSL
 * requires input key to be nonempty and salt length to be equal or less
 * than 1024.
75
 */
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
static int
crypto_expand_key_material_rfc5869_sha256_openssl(
                                    const uint8_t *key_in, size_t key_in_len,
                                    const uint8_t *salt_in, size_t salt_in_len,
                                    const uint8_t *info_in, size_t info_in_len,
                                    uint8_t *key_out, size_t key_out_len)
{
  int r;
  EVP_PKEY_CTX *evp_pkey_ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
  tor_assert(evp_pkey_ctx);
  tor_assert(key_in_len != 0);
  tor_assert(salt_in_len <= 1024);

  r = EVP_PKEY_derive_init(evp_pkey_ctx);
  tor_assert(r == 1);

  r = EVP_PKEY_CTX_set_hkdf_md(evp_pkey_ctx, EVP_sha256());
  tor_assert(r == 1);

  r = EVP_PKEY_CTX_set1_hkdf_salt(evp_pkey_ctx, salt_in, (int)salt_in_len);
  tor_assert(r == 1);

  r = EVP_PKEY_CTX_set1_hkdf_key(evp_pkey_ctx, key_in, (int)key_in_len);
  tor_assert(r == 1);

  r = EVP_PKEY_CTX_add1_hkdf_info(evp_pkey_ctx, info_in, (int)info_in_len);
  tor_assert(r == 1);

  r = EVP_PKEY_derive(evp_pkey_ctx, key_out, &key_out_len);
  tor_assert(r == 1);

  EVP_PKEY_CTX_free(evp_pkey_ctx);
  return 0;
}

#else

/**
 * Perform RFC5869 HKDF computation using our own legacy implementation.
 * Only to be called from crypto_expand_key_material_rfc5869_sha256_openssl.
 */
static int
crypto_expand_key_material_rfc5869_sha256_legacy(
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
                                    const uint8_t *key_in, size_t key_in_len,
                                    const uint8_t *salt_in, size_t salt_in_len,
                                    const uint8_t *info_in, size_t info_in_len,
                                    uint8_t *key_out, size_t key_out_len)
{
  uint8_t prk[DIGEST256_LEN];
  uint8_t tmp[DIGEST256_LEN + 128 + 1];
  uint8_t mac[DIGEST256_LEN];
  int i;
  uint8_t *outp;
  size_t tmp_len;

  crypto_hmac_sha256((char*)prk,
                     (const char*)salt_in, salt_in_len,
                     (const char*)key_in, key_in_len);

  /* If we try to get more than this amount of key data, we'll repeat blocks.*/
  tor_assert(key_out_len <= DIGEST256_LEN * 256);
  tor_assert(info_in_len <= 128);
  memset(tmp, 0, sizeof(tmp));
  outp = key_out;
  i = 1;

  while (key_out_len) {
    size_t n;
    if (i > 1) {
      memcpy(tmp, mac, DIGEST256_LEN);
      memcpy(tmp+DIGEST256_LEN, info_in, info_in_len);
      tmp[DIGEST256_LEN+info_in_len] = i;
      tmp_len = DIGEST256_LEN + info_in_len + 1;
    } else {
      memcpy(tmp, info_in, info_in_len);
      tmp[info_in_len] = i;
      tmp_len = info_in_len + 1;
    }
    crypto_hmac_sha256((char*)mac,
                       (const char*)prk, DIGEST256_LEN,
                       (const char*)tmp, tmp_len);
    n = key_out_len < DIGEST256_LEN ? key_out_len : DIGEST256_LEN;
    memcpy(outp, mac, n);
    key_out_len -= n;
    outp += n;
    ++i;
  }

  memwipe(tmp, 0, sizeof(tmp));
  memwipe(mac, 0, sizeof(mac));
  return 0;
}
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#endif

/** Expand some secret key material according to RFC5869, using SHA256 as the
 * underlying hash.  The <b>key_in_len</b> bytes at <b>key_in</b> are the
 * secret key material; the <b>salt_in_len</b> bytes at <b>salt_in</b> and the
 * <b>info_in_len</b> bytes in <b>info_in_len</b> are the algorithm's "salt"
 * and "info" parameters respectively.  On success, write <b>key_out_len</b>
 * bytes to <b>key_out</b> and return 0.  Assert on failure.
 */
int
crypto_expand_key_material_rfc5869_sha256(
                                    const uint8_t *key_in, size_t key_in_len,
                                    const uint8_t *salt_in, size_t salt_in_len,
                                    const uint8_t *info_in, size_t info_in_len,
                                    uint8_t *key_out, size_t key_out_len)
{
  tor_assert(key_in);
  tor_assert(key_in_len > 0);
186

187
188
189
190
191
192
193
194
195
196
197
198
199
200
#ifdef HAVE_OPENSSL_HKDF
  return crypto_expand_key_material_rfc5869_sha256_openssl(key_in,
                                             key_in_len, salt_in,
                                             salt_in_len, info_in,
                                             info_in_len,
                                             key_out, key_out_len);
#else
  return crypto_expand_key_material_rfc5869_sha256_legacy(key_in,
                                               key_in_len, salt_in,
                                               salt_in_len, info_in,
                                               info_in_len,
                                               key_out, key_out_len);
#endif
}