crypto_rsa.c 19.6 KB
Newer Older
1
2
3
/* Copyright (c) 2001, Matej Pfajfar.
 * Copyright (c) 2001-2004, Roger Dingledine.
 * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
Nick Mathewson's avatar
Nick Mathewson committed
4
 * Copyright (c) 2007-2019, The Tor Project, Inc. */
5
6
7
8
9
10
11
/* See LICENSE for licensing information */

/**
 * \file crypto_rsa.c
 * \brief Block of functions related with RSA utilities and operations.
 **/

12
#include "lib/crypt_ops/crypto_cipher.h"
13
14
15
16
17
18
19
#include "lib/crypt_ops/crypto_curve25519.h"
#include "lib/crypt_ops/crypto_digest.h"
#include "lib/crypt_ops/crypto_format.h"
#include "lib/crypt_ops/compat_openssl.h"
#include "lib/crypt_ops/crypto_rand.h"
#include "lib/crypt_ops/crypto_rsa.h"
#include "lib/crypt_ops/crypto_util.h"
20
21
22
#include "lib/ctime/di_ops.h"
#include "lib/log/util_bug.h"
#include "lib/fs/files.h"
23

24
#include "lib/log/escape.h"
25
#include "lib/log/log.h"
26
#include "lib/encoding/binascii.h"
27
#include "lib/encoding/pem.h"
28

29
#include <string.h>
30
31
32
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
33

34
35
36
37
#ifdef ENABLE_OPENSSL
#include <openssl/rsa.h>
#endif

38
39
/** Return the number of bytes added by padding method <b>padding</b>.
 */
40
int
41
42
43
44
crypto_get_rsa_padding_overhead(int padding)
{
  switch (padding)
    {
45
    case PK_PKCS1_OAEP_PADDING: return PKCS1_OAEP_PADDING_OVERHEAD;
46
47
48
49
    default: tor_assert(0); return -1; // LCOV_EXCL_LINE
    }
}

50
#ifdef ENABLE_OPENSSL
51
52
/** Given a padding method <b>padding</b>, return the correct OpenSSL constant.
 */
53
int
54
55
56
57
58
59
60
61
crypto_get_rsa_padding(int padding)
{
  switch (padding)
    {
    case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING;
    default: tor_assert(0); return -1; // LCOV_EXCL_LINE
    }
}
Nick Mathewson's avatar
Nick Mathewson committed
62
#endif /* defined(ENABLE_OPENSSL) */
63
64
65
66
67
68
69
70
71
72
73
74
75

/** Compare the public-key components of a and b.  Return non-zero iff
 * a==b.  A NULL key is considered to be distinct from all non-NULL
 * keys, and equal to itself.
 *
 *  Note that this may leak information about the keys through timing.
 */
int
crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b)
{
  return (crypto_pk_cmp_keys(a, b) == 0);
}

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
/** Perform a hybrid (public/secret) encryption on <b>fromlen</b>
 * bytes of data from <b>from</b>, with padding type 'padding',
 * storing the results on <b>to</b>.
 *
 * Returns the number of bytes written on success, -1 on failure.
 *
 * The encrypted data consists of:
 *   - The source data, padded and encrypted with the public key, if the
 *     padded source data is no longer than the public key, and <b>force</b>
 *     is false, OR
 *   - The beginning of the source data prefixed with a 16-byte symmetric key,
 *     padded and encrypted with the public key; followed by the rest of
 *     the source data encrypted in AES-CTR mode with the symmetric key.
 *
 * NOTE that this format does not authenticate the symmetrically encrypted
 * part of the data, and SHOULD NOT BE USED for new protocols.
 */
int
crypto_pk_obsolete_public_hybrid_encrypt(crypto_pk_t *env,
                                char *to, size_t tolen,
                                const char *from,
                                size_t fromlen,
                                int padding, int force)
{
  int overhead, outlen, r;
  size_t pkeylen, symlen;
  crypto_cipher_t *cipher = NULL;
  char *buf = NULL;

  tor_assert(env);
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen < SIZE_T_CEILING);

110
  overhead = crypto_get_rsa_padding_overhead(padding);
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
  pkeylen = crypto_pk_keysize(env);

  if (!force && fromlen+overhead <= pkeylen) {
    /* It all fits in a single encrypt. */
    return crypto_pk_public_encrypt(env,to,
                                    tolen,
                                    from,fromlen,padding);
  }
  tor_assert(tolen >= fromlen + overhead + CIPHER_KEY_LEN);
  tor_assert(tolen >= pkeylen);

  char key[CIPHER_KEY_LEN];
  crypto_rand(key, sizeof(key)); /* generate a new key. */
  cipher = crypto_cipher_new(key);

  buf = tor_malloc(pkeylen+1);
  memcpy(buf, key, CIPHER_KEY_LEN);
  memcpy(buf+CIPHER_KEY_LEN, from, pkeylen-overhead-CIPHER_KEY_LEN);

  /* Length of symmetrically encrypted data. */
  symlen = fromlen-(pkeylen-overhead-CIPHER_KEY_LEN);

  outlen = crypto_pk_public_encrypt(env,to,tolen,buf,pkeylen-overhead,padding);
  if (outlen!=(int)pkeylen) {
    goto err;
  }
  r = crypto_cipher_encrypt(cipher, to+outlen,
                            from+pkeylen-overhead-CIPHER_KEY_LEN, symlen);

  if (r<0) goto err;
  memwipe(buf, 0, pkeylen);
  memwipe(key, 0, sizeof(key));
  tor_free(buf);
  crypto_cipher_free(cipher);
  tor_assert(outlen+symlen < INT_MAX);
  return (int)(outlen + symlen);
 err:

  memwipe(buf, 0, pkeylen);
  memwipe(key, 0, sizeof(key));
  tor_free(buf);
  crypto_cipher_free(cipher);
  return -1;
}

/** Invert crypto_pk_obsolete_public_hybrid_encrypt. Returns the number of
 * bytes written on success, -1 on failure.
 *
 * NOTE that this format does not authenticate the symmetrically encrypted
 * part of the data, and SHOULD NOT BE USED for new protocols.
 */
int
crypto_pk_obsolete_private_hybrid_decrypt(crypto_pk_t *env,
                                 char *to,
                                 size_t tolen,
                                 const char *from,
                                 size_t fromlen,
                                 int padding, int warnOnFailure)
{
  int outlen, r;
  size_t pkeylen;
  crypto_cipher_t *cipher = NULL;
  char *buf = NULL;

  tor_assert(fromlen < SIZE_T_CEILING);
  pkeylen = crypto_pk_keysize(env);

  if (fromlen <= pkeylen) {
    return crypto_pk_private_decrypt(env,to,tolen,from,fromlen,padding,
                                     warnOnFailure);
  }

  buf = tor_malloc(pkeylen);
  outlen = crypto_pk_private_decrypt(env,buf,pkeylen,from,pkeylen,padding,
                                     warnOnFailure);
  if (outlen<0) {
    log_fn(warnOnFailure?LOG_WARN:LOG_DEBUG, LD_CRYPTO,
           "Error decrypting public-key data");
    goto err;
  }
  if (outlen < CIPHER_KEY_LEN) {
    log_fn(warnOnFailure?LOG_WARN:LOG_INFO, LD_CRYPTO,
           "No room for a symmetric key");
    goto err;
  }
  cipher = crypto_cipher_new(buf);
  if (!cipher) {
    goto err;
  }
  memcpy(to,buf+CIPHER_KEY_LEN,outlen-CIPHER_KEY_LEN);
  outlen -= CIPHER_KEY_LEN;
  tor_assert(tolen - outlen >= fromlen - pkeylen);
  r = crypto_cipher_decrypt(cipher, to+outlen, from+pkeylen, fromlen-pkeylen);
  if (r<0)
    goto err;
  memwipe(buf,0,pkeylen);
  tor_free(buf);
  crypto_cipher_free(cipher);
  tor_assert(outlen + fromlen < INT_MAX);
  return (int)(outlen + (fromlen-pkeylen));
 err:
  memwipe(buf,0,pkeylen);
  tor_free(buf);
  crypto_cipher_free(cipher);
  return -1;
}

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/** Given a private or public key <b>pk</b>, put a fingerprint of the
 * public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 bytes of
 * space).  Return 0 on success, -1 on failure.
 *
 * Fingerprints are computed as the SHA1 digest of the ASN.1 encoding
 * of the public key, converted to hexadecimal, in upper case, with a
 * space after every four digits.
 *
 * If <b>add_space</b> is false, omit the spaces.
 */
int
crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out, int add_space)
{
  char digest[DIGEST_LEN];
  char hexdigest[HEX_DIGEST_LEN+1];
  if (crypto_pk_get_digest(pk, digest)) {
    return -1;
  }
  base16_encode(hexdigest,sizeof(hexdigest),digest,DIGEST_LEN);
  if (add_space) {
    crypto_add_spaces_to_fp(fp_out, FINGERPRINT_LEN+1, hexdigest);
  } else {
    strncpy(fp_out, hexdigest, HEX_DIGEST_LEN+1);
  }
  return 0;
}

/** Given a private or public key <b>pk</b>, put a hashed fingerprint of
 * the public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1
 * bytes of space).  Return 0 on success, -1 on failure.
 *
 * Hashed fingerprints are computed as the SHA1 digest of the SHA1 digest
 * of the ASN.1 encoding of the public key, converted to hexadecimal, in
 * upper case.
 */
int
crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out)
{
  char digest[DIGEST_LEN], hashed_digest[DIGEST_LEN];
  if (crypto_pk_get_digest(pk, digest)) {
    return -1;
  }
  if (crypto_digest(hashed_digest, digest, DIGEST_LEN) < 0) {
    return -1;
  }
  base16_encode(fp_out, FINGERPRINT_LEN + 1, hashed_digest, DIGEST_LEN);
  return 0;
}

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/** Copy <b>in</b> to the <b>outlen</b>-byte buffer <b>out</b>, adding spaces
 * every four characters. */
void
crypto_add_spaces_to_fp(char *out, size_t outlen, const char *in)
{
  int n = 0;
  char *end = out+outlen;
  tor_assert(outlen < SIZE_T_CEILING);

  while (*in && out<end) {
    *out++ = *in++;
    if (++n == 4 && *in && out<end) {
      n = 0;
      *out++ = ' ';
    }
  }
  tor_assert(out<end);
  *out = '\0';
}

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
/** Check a siglen-byte long signature at <b>sig</b> against
 * <b>datalen</b> bytes of data at <b>data</b>, using the public key
 * in <b>env</b>. Return 0 if <b>sig</b> is a correct signature for
 * SHA1(data).  Else return -1.
 */
MOCK_IMPL(int,
crypto_pk_public_checksig_digest,(crypto_pk_t *env, const char *data,
                                  size_t datalen, const char *sig,
                                  size_t siglen))
{
  char digest[DIGEST_LEN];
  char *buf;
  size_t buflen;
  int r;

  tor_assert(env);
  tor_assert(data);
  tor_assert(sig);
  tor_assert(datalen < SIZE_T_CEILING);
  tor_assert(siglen < SIZE_T_CEILING);

  if (crypto_digest(digest,data,datalen)<0) {
    log_warn(LD_BUG, "couldn't compute digest");
    return -1;
  }
  buflen = crypto_pk_keysize(env);
  buf = tor_malloc(buflen);
  r = crypto_pk_public_checksig(env,buf,buflen,sig,siglen);
  if (r != DIGEST_LEN) {
    log_warn(LD_CRYPTO, "Invalid signature");
    tor_free(buf);
    return -1;
  }
  if (tor_memneq(buf, digest, DIGEST_LEN)) {
    log_warn(LD_CRYPTO, "Signature mismatched with digest.");
    tor_free(buf);
    return -1;
  }
  tor_free(buf);

  return 0;
}

/** Compute a SHA1 digest of <b>fromlen</b> bytes of data stored at
 * <b>from</b>; sign the data with the private key in <b>env</b>, and
 * store it in <b>to</b>.  Return the number of bytes written on
 * success, and -1 on failure.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>env</b>.
 */
int
crypto_pk_private_sign_digest(crypto_pk_t *env, char *to, size_t tolen,
                              const char *from, size_t fromlen)
{
  int r;
  char digest[DIGEST_LEN];
  if (crypto_digest(digest,from,fromlen)<0)
    return -1;
  r = crypto_pk_private_sign(env,to,tolen,digest,DIGEST_LEN);
  memwipe(digest, 0, sizeof(digest));
  return r;
}

/** Given a private or public key <b>pk</b>, put a SHA1 hash of the
 * public key into <b>digest_out</b> (must have DIGEST_LEN bytes of space).
 * Return 0 on success, -1 on failure.
 */
int
crypto_pk_get_digest(const crypto_pk_t *pk, char *digest_out)
{
  char *buf;
  size_t buflen;
  int len;
  int rv = -1;

  buflen = crypto_pk_keysize(pk)*2;
  buf = tor_malloc(buflen);
  len = crypto_pk_asn1_encode(pk, buf, buflen);
  if (len < 0)
    goto done;

  if (crypto_digest(digest_out, buf, len) < 0)
    goto done;

  rv = 0;
  done:
  tor_free(buf);
  return rv;
}

/** Compute all digests of the DER encoding of <b>pk</b>, and store them
 * in <b>digests_out</b>.  Return 0 on success, -1 on failure. */
int
crypto_pk_get_common_digests(crypto_pk_t *pk, common_digests_t *digests_out)
{
  char *buf;
  size_t buflen;
  int len;
  int rv = -1;

  buflen = crypto_pk_keysize(pk)*2;
  buf = tor_malloc(buflen);
  len = crypto_pk_asn1_encode(pk, buf, buflen);
  if (len < 0)
    goto done;

  if (crypto_common_digests(digests_out, (char*)buf, len) < 0)
    goto done;

  rv = 0;
 done:
  tor_free(buf);
  return rv;
}
402
403
404
405

static const char RSA_PUBLIC_TAG[] = "RSA PUBLIC KEY";
static const char RSA_PRIVATE_TAG[] = "RSA PRIVATE KEY";

406
407
408
409
410
411
412
413
414
415
/* These are overestimates for how many extra bytes we might need to encode
 * a key in DER */
#define PRIVATE_ASN_MAX_OVERHEAD_FACTOR 16
#define PUBLIC_ASN_MAX_OVERHEAD_FACTOR 3

/** Helper: PEM-encode <b>env</b> and write it to a newly allocated string.
 * If <b>private_key</b>, write the private part of <b>env</b>; otherwise
 * write only the public portion. On success, set *<b>dest</b> to the new
 * string, *<b>len</b> to the string's length, and return 0.  On failure,
 * return -1.
416
 */
417
418
419
420
static int
crypto_pk_write_to_string_generic(crypto_pk_t *env,
                                  char **dest, size_t *len,
                                  bool private_key)
421
{
422
423
424
425
426
427
  const int factor =
    private_key ? PRIVATE_ASN_MAX_OVERHEAD_FACTOR
                : PUBLIC_ASN_MAX_OVERHEAD_FACTOR;
  size_t buflen = crypto_pk_keysize(env) * factor;
  const char *tag =
    private_key ? RSA_PRIVATE_TAG : RSA_PUBLIC_TAG;
428
429
430
431
432
  char *buf = tor_malloc(buflen);
  char *result = NULL;
  size_t resultlen = 0;
  int rv = -1;

433
434
435
  int n = private_key
    ? crypto_pk_asn1_encode_private(env, buf, buflen)
    : crypto_pk_asn1_encode(env, buf, buflen);
436
437
438
  if (n < 0)
    goto done;

439
  resultlen = pem_encoded_size(n, tag);
440
441
  result = tor_malloc(resultlen);
  if (pem_encode(result, resultlen,
442
                 (const unsigned char *)buf, n, tag) < 0) {
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
    goto done;
  }

  *dest = result;
  *len = resultlen;
  rv = 0;

 done:
  if (rv < 0 && result) {
    memwipe(result, 0, resultlen);
    tor_free(result);
  }
  memwipe(buf, 0, buflen);
  tor_free(buf);
  return rv;
}

460
461
462
463
464
465
466
467
468
469
470
471
/** PEM-encode the public key portion of <b>env</b> and write it to a
 * newly allocated string.  On success, set *<b>dest</b> to the new
 * string, *<b>len</b> to the string's length, and return 0.  On
 * failure, return -1.
 */
int
crypto_pk_write_public_key_to_string(crypto_pk_t *env,
                                     char **dest, size_t *len)
{
  return crypto_pk_write_to_string_generic(env, dest, len, false);
}

472
473
474
475
476
477
478
479
480
/** PEM-encode the private key portion of <b>env</b> and write it to a
 * newly allocated string.  On success, set *<b>dest</b> to the new
 * string, *<b>len</b> to the string's length, and return 0.  On
 * failure, return -1.
 */
int
crypto_pk_write_private_key_to_string(crypto_pk_t *env,
                                          char **dest, size_t *len)
{
481
  return crypto_pk_write_to_string_generic(env, dest, len, true);
482
483
}

484
485
486
487
488
/**
 * Helper. Read a PEM-encoded RSA from the first <b>len</b> characters of
 * <b>src</b>, and store the result in <b>env</b>.  If <b>private_key</b>,
 * expect a private key; otherwise expect a public key. Return 0 on success,
 * -1 on failure.  If len is -1, the string is nul-terminated.
489
 */
490
491
static int
crypto_pk_read_from_string_generic(crypto_pk_t *env, const char *src,
492
                                   size_t len, int severity,
493
                                   bool private_key, int max_bits)
494
{
495
  if (len == (size_t)-1) // "-1" indicates "use the length of the string."
496
497
    len = strlen(src);

498
  const char *ktype = private_key ? "private key" : "public key";
499
500
  const char *tag =
    private_key ? RSA_PRIVATE_TAG : RSA_PUBLIC_TAG;
501
502
503
504
  size_t buflen = len;
  uint8_t *buf = tor_malloc(buflen);
  int rv = -1;

505
  int n = pem_decode(buf, buflen, src, len, tag);
506
507
508
  if (n < 0) {
    log_fn(severity, LD_CRYPTO,
           "Error decoding PEM wrapper while reading %s", ktype);
509
    goto done;
510
  }
511

512
  crypto_pk_t *pk = private_key
513
    ? crypto_pk_asn1_decode_private((const char*)buf, n, max_bits)
514
    : crypto_pk_asn1_decode((const char*)buf, n);
515
516
517
  if (! pk) {
    log_fn(severity, LD_CRYPTO,
           "Error decoding ASN.1 while reading %s", ktype);
518
    goto done;
519
  }
520

521
522
523
524
  if (private_key)
    crypto_pk_assign_private(env, pk);
  else
    crypto_pk_assign_public(env, pk);
525
526
527
528
529
530
531
532
533
  crypto_pk_free(pk);
  rv = 0;

 done:
  memwipe(buf, 0, buflen);
  tor_free(buf);
  return rv;
}

534
535
536
537
538
539
540
541
/** Read a PEM-encoded public key from the first <b>len</b> characters of
 * <b>src</b>, and store the result in <b>env</b>.  Return 0 on success, -1 on
 * failure.  If len is -1, the string is nul-terminated.
 */
int
crypto_pk_read_public_key_from_string(crypto_pk_t *env,
                                      const char *src, size_t len)
{
542
543
  return crypto_pk_read_from_string_generic(env, src, len, LOG_INFO, false,
                                            -1);
544
545
546
}

/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>src</b>
547
548
549
550
551
 * into <b>env</b>.  Return 0 on success, -1 on failure.  If len is -1,
 * the string is nul-terminated.
 */
int
crypto_pk_read_private_key_from_string(crypto_pk_t *env,
552
                                       const char *src, ssize_t len)
553
{
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
  return crypto_pk_read_from_string_generic(env, src, len, LOG_INFO, true,
                                            -1);
}

/**
 * As crypto_pk_read_private_key_from_string(), but reject any key
 * with a modulus longer than 1024 bits before doing any expensive
 * validation on it.
 */
int
crypto_pk_read_private_key1024_from_string(crypto_pk_t *env,
                                           const char *src, ssize_t len)
{
  return crypto_pk_read_from_string_generic(env, src, len, LOG_INFO, true,
                                            1024);
569
570
}

571
572
573
/** If a file is longer than this, we won't try to decode its private key */
#define MAX_PRIVKEY_FILE_LEN (16*1024*1024)

574
575
576
577
578
579
580
581
582
/** Read a PEM-encoded private key from the file named by
 * <b>keyfile</b> into <b>env</b>.  Return 0 on success, -1 on failure.
 */
int
crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
                                         const char *keyfile)
{
  struct stat st;
  char *buf = read_file_to_str(keyfile, 0, &st);
583
584
585
  if (!buf) {
    log_warn(LD_CRYPTO, "Unable to read file for private key in %s",
             escaped(keyfile));
586
    return -1;
587
  }
588
  if (st.st_size > MAX_PRIVKEY_FILE_LEN) {
589
590
    log_warn(LD_CRYPTO, "Private key file %s was far too large.",
             escaped(keyfile));
591
    tor_free(buf);
592
    return -1;
593
  }
594

595
  int rv = crypto_pk_read_from_string_generic(env, buf, (ssize_t)st.st_size,
596
                                              LOG_WARN, true, -1);
597
598
599
600
  if (rv < 0) {
    log_warn(LD_CRYPTO, "Unable to decode private key from file %s",
             escaped(keyfile));
  }
601
  memwipe(buf, 0, (size_t)st.st_size);
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
  tor_free(buf);
  return rv;
}

/** Write the private key from <b>env</b> into the file named by <b>fname</b>,
 * PEM-encoded.  Return 0 on success, -1 on failure.
 */
int
crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
                                        const char *fname)
{
  char *s = NULL;
  size_t n = 0;

  if (crypto_pk_write_private_key_to_string(env, &s, &n) < 0)
    return -1;

  int rv = write_bytes_to_file(fname, s, n, 0);
  memwipe(s, 0, n);
  tor_free(s);
  return rv;
}

/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the
 * Base64 encoding of the DER representation of the private key as a NUL
 * terminated string, and return it via <b>priv_out</b>.  Return 0 on
 * success, -1 on failure.
 *
 * It is the caller's responsibility to sanitize and free the resulting buffer.
 */
int
crypto_pk_base64_encode_private(const crypto_pk_t *pk, char **priv_out)
{
  size_t buflen = crypto_pk_keysize(pk)*16;
  char *buf = tor_malloc(buflen);
  char *result = NULL;
  size_t reslen = 0;
  bool ok = false;

  int n = crypto_pk_asn1_encode_private(pk, buf, buflen);

  if (n < 0)
    goto done;

  reslen = base64_encode_size(n, 0)+1;
  result = tor_malloc(reslen);
  if (base64_encode(result, reslen, buf, n, 0) < 0)
    goto done;

  ok = true;

 done:
  memwipe(buf, 0, buflen);
  tor_free(buf);
  if (result && ! ok) {
    memwipe(result, 0, reslen);
    tor_free(result);
  }
  *priv_out = result;
  return ok ? 0 : -1;
}

/** Given a string containing the Base64 encoded DER representation of the
 * private key <b>str</b>, decode and return the result on success, or NULL
 * on failure.
 */
crypto_pk_t *
crypto_pk_base64_decode_private(const char *str, size_t len)
{
  crypto_pk_t *pk = NULL;

  char *der = tor_malloc_zero(len + 1);
  int der_len = base64_decode(der, len, str, len);
  if (der_len <= 0) {
    log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64).");
    goto out;
  }

680
  pk = crypto_pk_asn1_decode_private(der, der_len, -1);
681
682
683
684
685
686
687

 out:
  memwipe(der, 0, len+1);
  tor_free(der);

  return pk;
}