() namecoin

Self-Authenticating TLS Certificates for Tor Onion Services
Jeremy Rand
Lead Application Engineer, The Namecoin Project
https://www.namecoin.org/
PGP: 1D04 FB9D 50BF 2A8E 9F3E 58AD DCT7E 7FS8A E30E 73E6

Presented at GPN22

Content Note!

* This talk contains mentions of geopolitical
Internet censorship pertaining to the war in
Ukraine.

- Both text on slides, and verbal elaboration.

- Only a couple minutes of the talk, but please be
aware of this.

What are Tor onion services?

* Host TCP services anonymously.

- http://
2gzyxasihm7nsggfxnu52rck2vv4arvmdlkiu3zzui5dudxycle
n53wid.onion/

* Encrypted and authenticated by the Tor daemon.
- Using an Ed25519 key (base32) in the domain name.
— No trusted 3" parties, it's just crypto.

What is TLS?

* Transport Layer Security.
- Encryption and authentication for TCP services.

- It's the “S” in “HTTPS".
* Based on the 90’s era Netscape protocol SSL.
— Occasionally people still incorrectly call it SSL.

Combining onion services and TLS?

* Onion services are anonymous.

 But TLS has better end-to-end security.

— Onion service encryption is terminated at the Tor
daemon.

- TLS Is terminated at the application.

Why does the endpoint matter?

* Tor daemon and application may be in different
trust domains.

- Whonix — Tor Browser runs in one VM: Tor daemon
runs in another VM.

- Web server could also be on Whonix, not just the client.

- Client and server won't know whether each other has
such a threat model.

Why does the endpoint matter? (2)

* Tor daemon and application may have an insecure
network connection to each other.

- Running Tor daemon and an HTTPS server on different
cloud infrastructure IP’s.

— Using Tor Browser on a laptop with a Tor daemon on a WiFi
router.

- Again, client and server won’t know whether each other has
such a threat model.

Compatibility

* Many applications expect TLS to be there.

* Web browsers show scary warnings without TLS.
- And they restrict features too (e.g. webcam access).

* Giving them TLS Is easier than patching them.

— Tor Browser’s relevant patches are a maintenance
nightmare.

The challenge

* TLS authenticates servers with certificates.
- S0 we need a way to issue certificates for onion services.

* We could use TLS without authentication (self-
signed certs)...
- Vulnerable to man-in-the-middle (MITM) attacks.

- Also would require patching apps.

Using public certificate authorities

for onion services?

e Standard websites would normally get
certificates from a public certificate authority via
ACME.

— The protocol that Let's Encrypt uses.

* Q Misell has done amazing work getting ACME
to work with onion services.

Public CA’s are Problematic

» Centralized, trusted 3" parties.

* Routinely engage in censorship.
— Sci-Hub has had their certs revoked (copyright lawsuit).
- S0 have all websites located in Donetsk (OFAC sanctions).

- S0 has a Russian media outlet aimed at American audiences
(OFAC sanctions again).

- Let’s Encrypt says they revoke (censor) about one website
certificate per month due to OFAC compliance reasons.

Public CA’s for Onions
can be a Liability

* To censor a cert, you don’t have to get a court order.
- You don’t even need to get a formal government request.

* Let’s Encrypt is proactively censoring sites due to OFAC
Issues, without OFAC ever asking them to.

- If even Let’'s Encrypt (backed by EFF) is so scared about OFAC
violations that they’re censoring without being asked to do so...

- It would be nice to investigate complementary options that might
be more censorship-resistant (like onion services themselves).

Other motivation:

Certificate Transparency
* Some onions want It.

e Some really don’t want it.

— Onion operators who don’'t want CT need another
option besides public CA’s.

Inspiration from DNSSEC

* |n the DNS world, there are TLSA records.

* You look up a TLSA record for a domain name...
— You get back a public key.

* This public key can be used as a domain-specific
CA to authenticate TLS certs for that domain.

We don’t want to use DNS of course

* We’'re also not using a blockchain, don’t worry.

 But hmm... put in a domain name, get back a public
key?

- How about... parse the .onion domain, extract the Ed25519
public key?

* You can make TLS CA’s that use Ed25519 keys.
— Proof of concept: onion-x509 by Alexander Faergy.

Web browsers don’t do TLSA

* So at Namecoin we had to solve this problem a
while back.

* Browser add-on?
- WebEXxtensions are no good.

- Mozilla doesn’'t want malware WebExtensions to
Interfere with TLS.

But there’s another kind

of browser add-on
e PKCS#11 modules.

e Well-known: it's how smartcards and HSM’s are
added to browsers.

e | ess well-known: browsers like Firefox use
PKCS#11 as a database query API for TLS
certificates.

Example PKCS#11 modules

* Moazilla’s built-in root CA list
- libnssckbi.so —it's where Let's Encrypt, Comodo, etc. are.

- This is a PKCS#11 module!

e SQLite-based trust database in Firefox.

- “Softoken” — it's where CA’s are stored that you added in the
Firefox Ul.

- This is also a PKCS#11 module!

Can we make our own
PKCS#11 module for this?

* Namecoin already had a PKCS#11 module (ncpll)
for TLSA lookups.

- Works great: Namecoin websites’ TLS certs validate
without issues.

- | patched it to do .onion too.

- For .onion domains, instead of doing a TLSA DNS lookup,
It just extracts the Ed25519 pubkey from the domain name.

Ed25519 Support Issues

* TLS specs allow Ed25519 keys.

- But Firefox doesn’t allow them.
- It only allows NIST ECDSA keys.

| found a workaround though.
- It's stupid but it works.

How do PKCS#11 queries work?

* Firefox sends PKCS#11 module the Subject
Name of a CA certificate.

« PKCS#11 module responds with the full
certificate of that CA and whether it's trusted.

What's a Subject Name?

e A Subject Name looks like this:

Subject Name

Country US
Organization DigiCert Inc
Organizational Unit www.digicert.com
Common Name DigiCert Global Root G2

There’s no public key
In a Subject Name

* Our PKCS#11 module can return a CA certificate containing any public
key we want.

e Our module just has to know which public key to return.

* If we wanted our PKCS#11 module to return a CA with an Ed25519 public
key, it'd be easy: just embed the .onion domain in the Subject Name
(which we’'d do anyway so that we know what domain name to mark it as
trusted for), and extract the Ed25519 public key from the .onion domain.

* But we want our module to return a CA with an ECDSA public key.
- How do we know which ECDSA public key the onion service owner owns?

Subject Name Tricks

e Subject names can have a serial number.
- Not the same as the certificate serial number.

* Subject Serial Numbers are arbitrary text with no
length limit.

— The onion service owner can embed an ECDSA public
key, and an Ed25519 signature of that ECDSA public
key, in the Subject Serial Number.

Subject Serial Number with
Embedded Signature

Subject Name

Common Name ><4hdﬁllx55n5§f24yejx3u2|2p6khqn|2xypxpcxavbpzwpt2p|x6dch.0n|on
Domain Carrier CA

Namecoin TLS Certificate Carrier:
320820367308203192a003020102021100dd34b1d0c4f6acb2759c5e0fbe20b
236300506032b6570308181315c305a0603550403135378346864366Cc7835
356e733666323479656a78337532693270366b6RT16e69327879707870637
8617662707a7770743270697836646371642e6f6e696f6e20446f6d61696e2
041494120506172656e742043413121301f060355040513184e616d65636F
696220544c53204365727469666963617465301e170d32343035313830303
53732325a3170d3235303531383030353732325a307d315830560603550403
134f78346864366Cc7835356e733666323479656a78337532693270366b687
16e693278797078706378617662707a7770743270697836646371642e6f6e
696foe20446fod61696e204361636865642043413121301f06035504051318
4e616d65636f696e20544C5320436572746966696361 74653059301 306072
a8648ce3d020106082a8648ce3d03010703420004ee3404348eab6dffad31df
6925e30864ae3aa3cbdd50fb12b8bead3cc9416e13646c1ca84e8dd44dal2
d5309be36f44137abd074e01cc807d88b45691b91594e9a38201783082017
4300e0603551d0f0101ff04040302020430130603551d25040c300a06082b0
6010505070301300f0603551d130101ff040530030101ff301d0603551d0e0
416041402bd5ad612b358dfa2z4a8e090a458%e15f0a6b3a3081ca06082b06
0105050701010481bd3081ba3081b706082b060105050730028681aa6874
74703a2f2f6169612e782d2d6e6d632e6269742f6169613f646f6d61696e3d
78346864366C7835356e733666323479656a78337532693270366b687 166
93278797078706378617662707a777074327069783664637 164266269616
e2B67075627368613235363d36633139376438646337363465303131663737
3932633637353634633439376661633334323639636161383363343236303
3306633616666363066386635326530500603551d1e0101ff04463044a042
3040823e7834H6864366C7835356e733666323479656a783375326932703606
b68716e693278797078706378617662707a7770743270697836646371642e
6f6e696f6e300506032b6570034100cb9e84363be1682125881c6ale21dbOf
28bf780130532e2bc749d3b8fcbbec416b81des276f919fb8cf063a56581f95
a27eba67c22491a68448b148ff16a%e0e

Serial Number

How does the PKCS#11
module handle this?

« PKCS#11 module sees a request from Firefox for a Subject
Name containing a .onion domain, ECDSA public key, and
Ed25519 signature.

 Verifies the signature with the .onion domain’s Ed25519 key.
* Constructs a certificate with the ECDSA public key.

 Returns that certificate to Firefox, marks as trusted for the
given .onion domain.

From Firefox’s perspective...

* All Firefox sees is a CA with an ECDSA public
key, and a really weird-looking Subject Serial
Number.

e |t sees that our PKCS#11 module marked 1t as
a trusted CA for the onion service in guestion.

* Firefox is happy.

Deployment (Server-Side)

« sudo generate_nmc_cert -use-ca -use-ala
-use-carrier -host
X4hd6 1x55ns6f24yejx3u2i2p6khgni2xypxpcxavbpzw
pt2pix6dcgd.onion
-grandparent-tor-key
/var/lib/tor/hidden_service/hs_ed25519 secret
_key

- Put the resulting chain.pem and key. pem into Caddy. No network
requests, no ACME client needed.

Deployment (Client-Side)

* Installing a PKCS#11 module in Firefox is easy.
- Just go to “Security Devices” settings...

- Click “Load” and choose the path of the PKCS#11
module...

« It'sa .so, .dylibor .dl1 file depending on OS.

- You're done. Ed25519 onion certificates will work
NOW.

Oh and 1t works In Tor Browser too.

oty O & =

Ed25519 Onion
PKCS#11 Test Site

If you can read this, then you've configured .onion
PKCS#11 trust correctly!

Check the cert chain to see how the magic works!

Compatibility

* Any application using NSS or GnuTLS knows how to use
PKCS#11 for this.

* An analogous API called AlA is used by Chromium, and the
Windows and macOS system cert validators.

— Namecoin already ported our TLSA support to work with AlA.
— .onion support is expected to be straightforward.

* Altogether that’s virtually all TLS implementations.
— Exception is OpenSSL.

Certificate Transparency

 Some browsers mandate CT.
- Policy set by a flag in PKCS#11 module.

- We can exclude our module from browser CT
requirements.

Will these API’'s go away upstream?

Using PKCS#11 for certificate database lookups has strong
Industry support.

Red Hat is aggressively promoting it.
- Red Hat is also adding support to OpenSSL.

This i1s how Fedora and RHEL make all applications use the OS-
level root CA list.

Breaking our use case would probably break Red Hat’s use cases.
- Seems OK for us.

Crypto Downside

* Even though Ed25519 is the trust anchor...
— The cert chain still has ECDSAIn it.

- So If an attacker can break ECDSA, the better
security of Ed25519 won't protect you.

* Kind of unfortunate given that onion services use
Ed25519 instead of ECDSA for good reason.

Thanks to funders

* NLnet Foundation’s Internet Hardening Fund /
Netherlands Ministry of Economic Affairs and
Climate Policy: funded me to do the Namecoin
PKCS#11 module.

* Cyphrs: funded me to do the onion-specific and
Ed25519-specific parts of the PKCS#11 module.

Next steps?

* This code and talk were written 2 weeks ago.
- 1 week ago | discussed this work with Q Misell (ACME dev).

* Result? | get to rewrite my code soon!

- New approach will put standard TLSA records in the onion
service descriptor (downloaded by Tor clients when they connect
to the onion service).

- Much more similar to how DNS and Namecoin do it.
- Huge thank you to Q for the feedback!

Contact me at...

https://www.namecoin.org/

OpenPGP (after mid-June):
1D04 FBID 50BF 2A8E 9F3E 58AD DC7E 7F8A E30OE 73E6

jeremyrand@danwinl1210.de (after mid-June)
byronlelah@airmail.cc (travel until mid-June — no PGP)
DECT. NCJR/ 6257 (during GPN)

Or just find me here at GPN! (The Namecoin logo on my shirt should
help you find me.)

