

 Self-Authenticating TLS Certificates for Tor Onion Services

Jeremy Rand
Lead Application Engineer, The Namecoin Project

https://www.namecoin.org/

PGP: 1D04 FB9D 50BF 2A8E 9F3E 58AD DC7E 7F8A E30E 73E6

Presented at GPN22

Content Note!
● This talk contains mentions of geopolitical

Internet censorship pertaining to the war in
Ukraine.
– Both text on slides, and verbal elaboration.
– Only a couple minutes of the talk, but please be

aware of this.

What are Tor onion services?
● Host TCP services anonymously.

– http://
2gzyxa5ihm7nsggfxnu52rck2vv4rvmdlkiu3zzui5du4xycle
n53wid.onion/

● Encrypted and authenticated by the Tor daemon.
– Using an Ed25519 key (base32) in the domain name.
– No trusted 3rd parties, it’s just crypto.

What is TLS?
● Transport Layer Security.

– Encryption and authentication for TCP services.
– It’s the “S” in “HTTPS”.

● Based on the 90’s era Netscape protocol SSL.
– Occasionally people still incorrectly call it SSL.

Combining onion services and TLS?
● Onion services are anonymous.
● But TLS has better end-to-end security.

– Onion service encryption is terminated at the Tor
daemon.

– TLS is terminated at the application.

Why does the endpoint matter?
● Tor daemon and application may be in different

trust domains.
– Whonix – Tor Browser runs in one VM; Tor daemon

runs in another VM.
– Web server could also be on Whonix, not just the client.
– Client and server won’t know whether each other has

such a threat model.

Why does the endpoint matter? (2)
● Tor daemon and application may have an insecure

network connection to each other.
– Running Tor daemon and an HTTPS server on different

cloud infrastructure IP’s.
– Using Tor Browser on a laptop with a Tor daemon on a WiFi

router.
– Again, client and server won’t know whether each other has

such a threat model.

Compatibility
● Many applications expect TLS to be there.
● Web browsers show scary warnings without TLS.

– And they restrict features too (e.g. webcam access).
● Giving them TLS is easier than patching them.

– Tor Browser’s relevant patches are a maintenance
nightmare.

The challenge
● TLS authenticates servers with certificates.

– So we need a way to issue certificates for onion services.
● We could use TLS without authentication (self-

signed certs)…
– Vulnerable to man-in-the-middle (MITM) attacks.
– Also would require patching apps.

Using public certificate authorities
for onion services?

● Standard websites would normally get
certificates from a public certificate authority via
ACME.
– The protocol that Let’s Encrypt uses.

● Q Misell has done amazing work getting ACME
to work with onion services.

Public CA’s are Problematic
● Centralized, trusted 3rd parties.
● Routinely engage in censorship.

– Sci-Hub has had their certs revoked (copyright lawsuit).
– So have all websites located in Donetsk (OFAC sanctions).
– So has a Russian media outlet aimed at American audiences

(OFAC sanctions again).
– Let’s Encrypt says they revoke (censor) about one website

certificate per month due to OFAC compliance reasons.

Public CA’s for Onions
can be a Liability

● To censor a cert, you don’t have to get a court order.
– You don’t even need to get a formal government request.

● Let’s Encrypt is proactively censoring sites due to OFAC
issues, without OFAC ever asking them to.
– If even Let’s Encrypt (backed by EFF) is so scared about OFAC

violations that they’re censoring without being asked to do so…
– It would be nice to investigate complementary options that might

be more censorship-resistant (like onion services themselves).

Other motivation:
Certificate Transparency

● Some onions want it.
● Some really don’t want it.

– Onion operators who don’t want CT need another
option besides public CA’s.

Inspiration from DNSSEC
● In the DNS world, there are TLSA records.
● You look up a TLSA record for a domain name…

– You get back a public key.
● This public key can be used as a domain-specific

CA to authenticate TLS certs for that domain.

We don’t want to use DNS of course
● We’re also not using a blockchain, don’t worry.
● But hmm… put in a domain name, get back a public

key?
– How about… parse the .onion domain, extract the Ed25519

public key?
● You can make TLS CA’s that use Ed25519 keys.

– Proof of concept: onion-x509 by Alexander Færøy.

Web browsers don’t do TLSA
● So at Namecoin we had to solve this problem a

while back.
● Browser add-on?

– WebExtensions are no good.
– Mozilla doesn’t want malware WebExtensions to

interfere with TLS.

But there’s another kind
of browser add-on

● PKCS#11 modules.
● Well-known: it’s how smartcards and HSM’s are

added to browsers.
● Less well-known: browsers like Firefox use

PKCS#11 as a database query API for TLS
certificates.

Example PKCS#11 modules
● Mozilla’s built-in root CA list

– libnssckbi.so – it’s where Let’s Encrypt, Comodo, etc. are.
– This is a PKCS#11 module!

● SQLite-based trust database in Firefox.
– “Softoken” – it’s where CA’s are stored that you added in the

Firefox UI.
– This is also a PKCS#11 module!

Can we make our own
PKCS#11 module for this?

● Namecoin already had a PKCS#11 module (ncp11)
for TLSA lookups.
– Works great: Namecoin websites’ TLS certs validate

without issues.
– I patched it to do .onion too.
– For .onion domains, instead of doing a TLSA DNS lookup,

it just extracts the Ed25519 pubkey from the domain name.

Ed25519 Support Issues
● TLS specs allow Ed25519 keys.

– But Firefox doesn’t allow them.
– It only allows NIST ECDSA keys.

● I found a workaround though.
– It’s stupid but it works.

How do PKCS#11 queries work?
● Firefox sends PKCS#11 module the Subject

Name of a CA certificate.
● PKCS#11 module responds with the full

certificate of that CA and whether it’s trusted.

What’s a Subject Name?
● A Subject Name looks like this:

There’s no public key
in a Subject Name

● Our PKCS#11 module can return a CA certificate containing any public
key we want.

● Our module just has to know which public key to return.
● If we wanted our PKCS#11 module to return a CA with an Ed25519 public

key, it’d be easy: just embed the .onion domain in the Subject Name
(which we’d do anyway so that we know what domain name to mark it as
trusted for), and extract the Ed25519 public key from the .onion domain.

● But we want our module to return a CA with an ECDSA public key.
– How do we know which ECDSA public key the onion service owner owns?

Subject Name Tricks
● Subject names can have a serial number.

– Not the same as the certificate serial number.
● Subject Serial Numbers are arbitrary text with no

length limit.
– The onion service owner can embed an ECDSA public

key, and an Ed25519 signature of that ECDSA public
key, in the Subject Serial Number.

Subject Serial Number with
Embedded Signature

How does the PKCS#11
module handle this?

● PKCS#11 module sees a request from Firefox for a Subject
Name containing a .onion domain, ECDSA public key, and
Ed25519 signature.

● Verifies the signature with the .onion domain’s Ed25519 key.
● Constructs a certificate with the ECDSA public key.
● Returns that certificate to Firefox, marks as trusted for the

given .onion domain.

From Firefox’s perspective…
● All Firefox sees is a CA with an ECDSA public

key, and a really weird-looking Subject Serial
Number.

● It sees that our PKCS#11 module marked it as
a trusted CA for the onion service in question.

● Firefox is happy.

Deployment (Server-Side)
● sudo generate_nmc_cert -use-ca -use-aia
-use-carrier -host
x4hd6lx55ns6f24yejx3u2i2p6khqni2xypxpcxavbpzw
pt2pix6dcqd.onion
-grandparent-tor-key
/var/lib/tor/hidden_service/hs_ed25519_secret
_key
– Put the resulting chain.pem and key.pem into Caddy. No network

requests, no ACME client needed.

Deployment (Client-Side)
● Installing a PKCS#11 module in Firefox is easy.

– Just go to “Security Devices” settings…
– Click “Load” and choose the path of the PKCS#11

module…
● It’s a .so, .dylib or .dll file depending on OS.

– You’re done. Ed25519 onion certificates will work
now.

Oh and it works in Tor Browser too.

Compatibility
● Any application using NSS or GnuTLS knows how to use

PKCS#11 for this.
● An analogous API called AIA is used by Chromium, and the

Windows and macOS system cert validators.
– Namecoin already ported our TLSA support to work with AIA.
– .onion support is expected to be straightforward.

● Altogether that’s virtually all TLS implementations.
– Exception is OpenSSL.

Certificate Transparency
● Some browsers mandate CT.

– Policy set by a flag in PKCS#11 module.
– We can exclude our module from browser CT

requirements.

Will these API’s go away upstream?
● Using PKCS#11 for certificate database lookups has strong

industry support.
● Red Hat is aggressively promoting it.

– Red Hat is also adding support to OpenSSL.
● This is how Fedora and RHEL make all applications use the OS-

level root CA list.
● Breaking our use case would probably break Red Hat’s use cases.

– Seems OK for us.

Crypto Downside
● Even though Ed25519 is the trust anchor…

– The cert chain still has ECDSA in it.
– So if an attacker can break ECDSA, the better

security of Ed25519 won’t protect you.
● Kind of unfortunate given that onion services use

Ed25519 instead of ECDSA for good reason.

Thanks to funders
● NLnet Foundation’s Internet Hardening Fund /

Netherlands Ministry of Economic Affairs and
Climate Policy: funded me to do the Namecoin
PKCS#11 module.

● Cyphrs: funded me to do the onion-specific and
Ed25519-specific parts of the PKCS#11 module.

Next steps?
● This code and talk were written 2 weeks ago.

– 1 week ago I discussed this work with Q Misell (ACME dev).
● Result? I get to rewrite my code soon!

– New approach will put standard TLSA records in the onion
service descriptor (downloaded by Tor clients when they connect
to the onion service).

– Much more similar to how DNS and Namecoin do it.
– Huge thank you to Q for the feedback!

Contact me at...
● https://www.namecoin.org/
● OpenPGP (after mid-June):

1D04 FB9D 50BF 2A8E 9F3E 58AD DC7E 7F8A E30E 73E6
● jeremyrand@danwin1210.de (after mid-June)
● byronlelah@airmail.cc (travel until mid-June – no PGP)
● DECT: NCJR / 6257 (during GPN)☎️ ☎️

● Or just find me here at GPN! (The Namecoin logo on my shirt should
help you find me.)

